Chapter VI

Systematic Instructional Design

with
Atsusi Hirumi, University of Central Florida, USA

Making Connections

In Part II, we explored adult learning principles, learner differences, and engaging learners to promote self-directed learning. Now, in Part III, we will examine systematic instructional design, including the student- or learner-centered approaches that promote lifelong learning. Although many trainers and instructors serve as both the content specialist and instructional designer, some institutions use a team approach with various people providing expertise. This chapter provides an overview of learner-centered instruction and instructional design models to help you or a team of developers conceptualize instructional planning. What are the components of instructional design? What is meant by teacher-centered versus learner-centered paradigms of instruction? How can we design instruction that will promote active learning and the use of critical and creative thinking skills?
Introduction

One of the most important considerations in the delivery of a program at a distance is the attention given to instructional design. "Instructional designs serve as mediators between the realms of learning theory and instructional practice, providing a means of developing interventions through which changes in learned capabilities can occur" (Wagner, 1994, pp. 20–21). Many instructional design models exist in the literature, but most models have common concepts. The Dick and Carey (1990) model is often used to design instruction with the process including developing broad instructional goals based on the needs of the audience, determining instructional objectives, developing means to determine if the objectives have been met, selecting strategies to implement the objectives, selecting media and methods for instruction, and providing formative and summative evaluation in an ongoing process.

Furthermore, instructional designers must also integrate learner-centered and self-directed approaches for distance learning. Learner-centered instruction considers a myriad of characteristics, processes, interactions, and delivery methods that result in effective teaching and learning. For example, asynchronous delivery strategies allow learners to complete work in their own time and location rather than be in the classroom at a specified time.

Related to learner-centered instructional design is the notion of self-directed learning. "As a person matures, his or her self-concept moves from that of a dependent personality toward one of a self-directing human being" (Merriam & Caffarella, 1999, p. 272). Adults prefer self-directed or self-designed activities more than relying on one medium for learning, and they also prefer control of the learning pace (Zemke & Zemke, 1984). Self-directed learning does not mean isolation. It may involve several resources, professionals, lectures, seminars, and face-to-face interactions. According to Grow (1991), adult learners progress from dependency to self-direction. "Some features of self-direction are distinctly situational: few learners are equally motivated toward all subjects. Some features appear to be deep, familial, perhaps even genetic traits of individual personalities—such as persistence" (p. 128).
Learner-Centered Instruction

Learner-centered instruction can be defined as any formal or nonformal education that accounts for a learner's cognitive and metacognitive factors, motivational and affective factors, developmental and social factors, and individual differences (APA, 1997). Cognitive and metacognitive factors include the nature of the learning process, goals of the learning process, construction of knowledge, strategic thinking, thinking about thinking, and context of learning. Motivational and affective factors include the emotional influence on learning, intrinsic motivation to learn, and effects of motivation on effort. Developmental and social factors include developmental and social influences on learning. Individual differences factors include differences in learning, diversity, standards, and assessment.

What are the hallmarks of learner-centered instruction? Learners in this setting are actively involved, applying knowledge to emerging issues, integrating discipline-based knowledge. Learners understand and value excellent work and become sophisticated knowers who are respected and valued. The design of learner-centered instruction requires a paradigm shift, challenging our beliefs about learning and the role that the instructor plays in the process (Huba & Freed, 2000). Figure 1 shows several of the key elements that embody the shift from teacher-centered to learner-centered instruction.

In a teacher-centered environment, the instructor's role often focuses on the transmission of knowledge. The learner-centered approach substitutes active learning experiences for passive activities such as lectures so that learners think about and solve problems requiring critical or creative thinking and includes the use of self-paced and/or cooperative learning (Felder & Brent, 1996). Re-

Figure 1. Comparison of teacher-centered and learner-centered instruction

<table>
<thead>
<tr>
<th>PARADIGM SHIFT</th>
<th>Learner-centered instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher-centered instruction</td>
<td>Learner-centered instruction</td>
</tr>
<tr>
<td>• Knowledge transmitted</td>
<td>• Knowledge constructed</td>
</tr>
<tr>
<td>• Passive</td>
<td>• Active</td>
</tr>
<tr>
<td>• Context independent</td>
<td>• Context dependent</td>
</tr>
<tr>
<td>• Assessment separated</td>
<td>• Assessment integrated</td>
</tr>
<tr>
<td>• Competitive</td>
<td>• Cooperative</td>
</tr>
</tbody>
</table>

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.
searchers have determined that the learner-centered approach may lead to “increased motivation to learn, greater retention of knowledge, deeper understanding, and more positive attitudes toward the subject being taught” (Felder & Brent, 1996, p. 43). As students experience learner-centered instruction, they may resist initially because of a mismatch between instructor role and learner readiness to perform in this setting. This resistance is part of the shift from teacher-centered instructional dependence to intellectual autonomy (Grow, 1991; Hirumi, 2002; Kloss, 1994). Instructors who are unaccustomed to a learner-centered approach may feel a bit uncomfortable in the beginning. The Thought and Reflection box below poses some possible concerns and potential solutions.

Thought and Reflection

A faculty member at a university who was designing her first course to deliver at a distance was encouraged by the instructional designer to consider using student-centered instructional design. The first question asked by the faculty member was, “Won’t this active learning approach take too much time? How will I cover all my material?” The instructional designer assured the faculty member that much class time is wasted by assuming the learner is actually learning the material when simply copying notes from a lecture. Didactic materials can be provided through text-based or a brief video-based lecture (streaming video, Microsoft Producer file, or Captasia file), but the essence of active learning is for the students to do more, and the instructor less. The faculty member then asked, “What about reading assignments? How can I make sure the learners understand the material independently?” The instructional designer suggested, “Provide links to readings with some advanced organizers to illustrate visually key points or you can prepare study guides that summarize critical questions in the readings. Even consider having the learners create the key-point summaries or process the material in a writing assignment.” The faculty member replied, “This approach could really change the way I teach!” “Yes, that’s the idea.”

Learner-centered instruction should be clear and understandable, responsive to the ways in which students learn and communicate, and engaging, thereby incorporating the learners’ interests and motivations (Egan & Gibb, 1997). In distance education, clarity should be achieved through organization and planning. By creating a detailed syllabus and interactive study guides, selecting course content, and selecting appropriate visualization tools, the instructor and
Instructional designer can provide a learning pathway that is easy to follow and understand.

To design effective learner-centered instruction, you must know your learners. By conducting an audience analysis to determine entry-level competence, motivations, and prior experience with technology, the instructor can develop instructional materials at the appropriate level and consider the use of individualized instructional sequences. For example, an instructor would need to design and deliver individualized instructional sequences to provide the greatest opportunity for learning when confronted with participants with dichotomous competencies; those who have little to no competence on any of the measurement items, and those who have high levels of competence on most items. Without a way of documenting learner competencies as they enter a program or course, an instructor cannot facilitate student-centered learning. As in most teacher-centered learning environments, they would be forced to teach or train to the average learner. Unfortunately, this is often the case, thereby providing course material that is too challenging for some learners and too simple for others.

Another factor that promotes learner-centered instruction is the incorporation of novel approaches to stimulate motivation and curiosity. In our own courses, we often use short video clips to gain the attention of the learner in a new way. These clips often include the use of props or analogies to connect the learners’ prior knowledge with the material they will be learning. This also serves to build rapport and provide instructor immediacy (approachability) to help foster an interactive learning environment. The idea is a focus on learning rather than teaching.

Internet Connection
www.aged.tamu.edu/classes/611

This link takes you to a graduate course, “Advanced Methods in Distance Education.” You can view the instructional design features, including the use of video openers, as a novel approach to gain attention and stimulate motivation.
As noted earlier in this chapter, a move from teacher-centered to learner-centered instruction represents a major paradigm shift. To illustrate further this point, consider Figure 2. A teacher-centered approach assumes that teachers direct the learning process and control students' access to and application of information. Students are treated like empty vessels and learning is viewed as additive. Instruction is geared to the average students with everyone progressing at the same pace. Family and community members may influence student learning, but typically their activities (and resulting outcomes) are not planned as an integral part of the formal learning process.

Students, however, are not empty vessels and learning is an active, dynamic process. In student-centered environments, learners are given direct access to the knowledge base and work individually and in small groups to solve authentic problems. In such environments, parents and community members also have direct access to teachers and the knowledge base, playing an integral role in the process (Hirumi, 2002).

In short, the role of the instructor in a learner-centered environment is to facilitate learning. This includes providing resources to help the learner develop his or her skills in critical thinking, problem solving, and decision making by helping him or her access, interpret, organize, and otherwise apply information.

Figure 2. A comparison of teacher- and student-centered learning environments (Hirumi, 2002) (used with permission from the Association for the Advancement of Computing in Education)
Table 1 further details the differences between teacher- and student-centered learning environments. After examining the contents of the table, ask yourself, "How do I describe in one sentence the actions that make up the fundamental differences between the teacher-centered and the student-centered learning environments?"

Now that we have defined and described learner-centered instruction, we will review instructional design models from two varying perspectives.

Table 1. A comparison of key instructional variables in teacher- and student-centered learning environments (Hirumi, 2002) (used with permission from the Association for the Advancement of Computing in Education)

<table>
<thead>
<tr>
<th>Instructional Variables</th>
<th>Instructional Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructional Approach</td>
<td>Teacher Centered</td>
</tr>
<tr>
<td>Learning Outcomes</td>
<td>Discipline-specific verbal information</td>
</tr>
<tr>
<td></td>
<td>Lower-order thinking skills (e.g., recall, identify, define)</td>
</tr>
<tr>
<td></td>
<td>Memorization of abstract and isolated facts, figures, and formulas</td>
</tr>
<tr>
<td>Goals and Objectives</td>
<td>Teacher prescribes learning goals and objectives based on prior experiences, past practices, and state and/or locally mandated standards</td>
</tr>
<tr>
<td>Instructional Strategy</td>
<td>Instructional strategy prescribed by teacher</td>
</tr>
<tr>
<td></td>
<td>Group paced, designed for average student</td>
</tr>
<tr>
<td></td>
<td>Information organized and presented primarily by teacher (e.g., lectures) with some supplemental reading assignments</td>
</tr>
<tr>
<td>Assessment</td>
<td>Assessments used to sort students</td>
</tr>
<tr>
<td></td>
<td>Paper-and-pencil exams used to assess students' acquisition of information</td>
</tr>
<tr>
<td></td>
<td>Teacher sets performance criteria for students</td>
</tr>
<tr>
<td></td>
<td>Students left to find out what teacher wants</td>
</tr>
<tr>
<td>Teacher's Role</td>
<td>Teacher organizes and presents information to group of students</td>
</tr>
<tr>
<td></td>
<td>Teacher acts as gatekeeper of knowledge, controlling students' access to information</td>
</tr>
<tr>
<td></td>
<td>Teacher directs learning</td>
</tr>
<tr>
<td>Students' Role</td>
<td>Students expect teachers to teach them what's required to pass the test</td>
</tr>
<tr>
<td></td>
<td>Passive recipients of information</td>
</tr>
<tr>
<td></td>
<td>Recipients knowledge and information</td>
</tr>
<tr>
<td>Environment</td>
<td>Students sit individually in rows, information presented primarily via lectures and reading assignments</td>
</tr>
</tbody>
</table>

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.
Instructional Design Models

Instructional design is a systematic process or organized procedure for developing instructional materials (learning objects), including steps of analysis (defining what is to be learned), designing (specifying how the learning should occur), developing (producing the learning objects), implementing (using delivery strategies), and evaluating (determining if the objectives have been satisfied). Instructional design emerges from system theory. The main purpose is to construct effective delivery of a learning experience (Morrison, Ross, & Kemp, 2004).

We introduced the concept of learner-centered instruction in the previous section. Some content areas and potential audiences may still rely on teacher-directed instruction. If this is the case, you may need to use Grow’s model (discussed in chapter V) to help learners gradually become more self-directed. We will discuss two major areas of learning theory: behaviorist (introduced in chapter III) and constructivist. Remember that your own personal philosophy and type of audience and content will determine the approaches that you may choose to use. If you would like a detailed description of these paradigms of instruction, see the Internet Connection section below.

Internet Connection
http://carbon.cudenver.edu/~mryder/te_data/idmodels.html
This site provides a detailed listing of links on instructional design to aid in understanding the theoretical components of behaviorism (prescriptive models) and constructivism (phenomenological models).

Behaviorist Learning Theory

Behavioral theorists are interested in observable actions that will “change” the learner. Reinforcement of desired responses is a critical component. Educational goals are operationally defined, empirically measurable, observable behaviors. “[L]earning is achieved through frequent response and immediate reinforcement of appropriate behavior” (Villaba & Romiszowski, 2001, p.
327). Hence, behaviorist principles provided the foundation for the antecedents of Web-based training: drill and practice, sound motion pictures, silent filmstrips, and instructor manuals. It also served as a foundation for task analysis concepts, classroom management techniques, commercially marketed programmed instructional modules, and development of the early computer-assisted instruction instructional models (Hilgard & Bower, 1975; Tennyson, Schott, Seel, & Dijkstra, 1997).

Smith and Ragan (2000) emphasize that behaviorist principles allowed for objective research in education by eliminating the “form of encounter” variable, allowing for valid and reliable empirical evidence to be acquired in areas such as practice, feedback, sequence, criterion referenced assessment, small frames of instruction, and self-paced. These attributes are still considered valuable in Web-based training and form the basis for popular instructional design modules, such as the one posited by Smith and Ragan. Smith and Ragan’s instructional design model consists of three main stages: analysis (learning environment, learners, learning task, write test items), strategy (determine organizational strategies, delivery strategies, management strategies, and write and produce instruction), and evaluation (conduct formative evaluation and revise previous steps). The specific tasks associated with each stage, in turn, are grounded in research and theory.

Here are a few other examples. Dick and Carey developed an instructional design model that was first published in 1978 and is still considered a seminal piece by trainers and instructional designers in military and corporate settings. This model describes the instructional design process from stating goals and writing objectives to developing materials, assessing instruction, and grading. It focuses on the development of criterion-referenced test items to determine if instructional objectives have been met and formative evaluation to ensure the effectiveness and efficiency of the instruction (Dick & Carey, 1990; Dick, Carey, & Carey, 2001).

Another common instructional design model is called “ADDIE”: Analyze needs, Design instruction, Develop materials, Implement activities, and Evaluate participant progress and instructional effectiveness (Hall, 1997; Powers, 1997). An audience analysis, budget, and due dates are some of the considerations during the analysis phase. Selecting the most appropriate environment, writing instructional objectives, selecting the overall approach and program look and feel, and designing the course content are components of the design phase (Driscoll, 1998; Porter, 1997). In the development phase, media are
obtained and/or created and instructional designers determine appropriate interactions to encourage learners to construct a supportive social environment (Porter, 1997; Simonson, Smaldino, Albright, & Zvacek, 2003). In the implementation phase, all materials are available and maintained on the course Web site. Preparation for technical difficulties and alternative plans are also communicated (Simonson et al., 2003). Finally, the designer creates appropriate assessment and evaluation procedures, whether those are criterion-referenced test items, research papers, class participation, or competency skills (Powers, 1997). Instructional designers also plan formative evaluations to test for problems or misunderstanding (Schrum, 1998) as well as summative evaluation to determine the overall effect of the course (Bourne, McMaster, Rieger, & Campbell, 1997).

This section represents only a few instructional design models in the literature. Although semantics vary, the overall concepts/stages are fairly consistent. Each has an analysis stage, generally followed by writing instructional objectives, deciding upon the techniques to use to develop and deliver instruction, and then methods to evaluate the results to see if the objectives have been met.

However, some argue that traditional instructional design models grounded in behavioralistic theories do not account for the dynamic nature of human learning (Halff, 1988), and thus, are unsuitable for facilitating learner-centered instruction. Instructional designers applying traditional design models are accustomed to generating prepackaged instructional sequences that a trainer/instructor can pick up and replicate in traditional classroom settings. However, prepackaged instruction that sets goals, strategies, and assessments prior to delivery and remain set during the learning process may not be appropriate with adult learners, particularly at a distance. According to adult learning theory, every individual derives meaning from content in a unique way, based upon their previous experiences. Thus, instructional goals and activities cannot necessarily be prescribed or prepackaged. Instructional methods and materials must be dynamic in learner-centered environments to meet individual needs and interests, which leads us (and others) to look at design from another viewpoint.

Constructivist Learning Theory

In contrast to the behaviorists, the rationalist epistemological movement in Germany in the 1920s gave rise to Gestalt theory. The interest was in perception and problem-solving processes, attributing the locus of control for
a learning activity to the learner, in contrast to the behaviorist belief that it lay with the environment (Hilgard & Bower, 1975; Merriam & Caffarella, 2000; Tennyson, Schott, Seel, & Dijkstra, 1997). “New information is built on existing knowledge structures or schemas, relevant processing activities are stimulated, and specific strategies are taught to ensure that the learner efficiently acquires the information or solves the problems” (Villaba & Romiszowski, 2001, p. 327).

Many educational psychologists find that behaviorist approaches do not fully explain how and why people learn and do not meet their needs. In areas of critical and creative thinking, learning strategies may be more concerned with what is unobservable, what is going on in the mind (or the black box as previously mentioned in chapter III). These theories are based on the work of John Dewey, Lev Vygotsky, Jean Piaget, and Jerome Bruner. “Learning from this perspective [constructivist] is viewed as a self-regulatory process of struggling with the conflict between existing personal models of the world and discrepant new insights, constructing new representations and models of reality as a human meaning—making venture with culturally developed tools and symbols, and further negotiating such meaning through cooperative social activity, discourse, and debate” (Fosnot, 1996, p. ix). In a constructivist environment, the learner has a multitude of ways in which to address an issue, such as experimentation, computer models, and dialogue with peers. Learners are active, independent participants. Cognitive experiences situated in authentic activities, such as project-based learning, cognitive apprenticeships, or case-based learning environments, result in richer and more meaningful learning experiences. Social negotiation allows learners to process and test their construction through discourse, dialogue, and collaboration.

For a wonderful comparison of behaviorist and constructivist approaches, see the Internet Connection below.

Internet Connection

http://depts.washington.edu/eproject/Instructional_Design_Approaches.htm

This site provides a comparison of the two instructional design approaches by learning theorists, learning outcomes, instructor role, student role, activities, and assessment.
Instructional design models based solely on constructivist theory are difficult to find. Constructivist design principles have been published (e.g., Hannifin, Hannifin, L. and, & Oliver, 1997; Honebein, 1996; Jonassen, 1999), but they are difficult to implement because they present educators with heuristics (general principles) rather than algorithms (step-by-step processes). To help educators apply constructivist and learner-centered approaches to teaching and learning, Hirumi (2002) developed the Student-Centered, Technology-Rich Learning Environment (SCeNTRE) model.

Multiple perspectives, active participation, the construction of meaning, argumentation, and reflection are all key components of SCeNTRE. SCeNTRE presents eight instructional events or stages for facilitating construction of knowledge and the development of metacognitive skills associated with lifelong learning:

- **Event 1 – Set Learning Challenge.** The challenge may take the form of an instructional goal, goal statements, or learning outcome. The challenge should situate learning within an authentic context and describe what the learners should be able to do as a result of the instruction.

- **Event 2 – Negotiate Learning Goals and Objectives.** At this stage, the learners should assess their learning requirements and work with the instructor to set individual learning goals and objectives. This negotiation can occur through discussion, learner assessments, preliminary definition of goals and objectives, feedback from the instructor, revision (if necessary), and continuous monitoring.

- **Event 3 – Negotiate Learning Strategy.** During this event, learners determine how they will achieve their learning goals and objectives. Learners and the instructor discuss various methods (individually or in small or large groups) and determine jointly the best course of action. Learners begin developing an important skill associated with independent learners during this process, namely, being able to discern what strategies or learning resources are most effective and efficient for themselves.

- **Event 4 – Construct Knowledge.** This event requires learners to work individually and in groups to derive meaning from various resources identified during Event 3 and to construct their skills and knowledge. The instructor monitors group and individual progress, answers questions, and facilitates learning when necessary.
• **Event 5 – Negotiate Performance Criteria.** A significant difference between a novice and an expert is that an expert can judge the quality of his or her own work as well as the work of others; a novice cannot do so. During Event 5, learners work with the instructor to define performance criteria for their selected goals and objectives (a characteristic of self-directed, lifelong learners). Emphasis is on the assessment of work samples in a portfolio with specificity included on the characteristics of excellence.

• **Event 6 - Conduct Self, Peer, and Expert Assessments.** After establishing performance criteria and generating work samples, the learners are asked to assess themselves and have at least one other adult also assess their work using the performance criteria and assessment rubrics generated in Event 5. The key is to obtain feedback for continuous improvement.

• **Event 7 – Monitor Performance and Provide Feedback.** This event takes place throughout the learning process. The instructor monitors work, examines documents, replies to e-mail, asks the learner how he or she is doing, and so forth. Learners also provide feedback to each other.

• **Event 8 – Communicate Results.** Informally, communications are used for self, peer, and expert assessments to generate feedback. Learners are also asked to prepare, present, and submit a portfolio with assessment rubrics, work samples, and a narrative description. The production and selection of work samples illustrate achievement of their goals and objectives, and the narrative provides an opportunity for reflection and articulation of what they have learned.

The eight events in the SCeNTRLE model provide a framework appropriate for learner-centered instructional design and assessment. We do not argue that systematic design models, such as the one posited by Dick and Carey (1990), are unsuitable for facilitating learner-centered instruction. Instructional design models should in fact be used to design learner-centered instruction, but the designer should consider the purpose of the various steps posited by each model. For example, in the Dick and Carey model, educators and instructional designers are directed to conduct learner, task, content, subject matter, and context analysis to define and prescribe learning objectives. In the SCeNTRLE model, designers are urged to conduct analyses, not to prescribe objectives, but to identify objectives to be used later by the instructor as a foundation for
negotiating learning goals and objectives by the learner (Event 2). The Dick and Cary model directs designers to develop and prescribe instructional strategies for facilitating learner achievement of defined objectives. In SCenTRLE, designers identify strategies, but rather than prescribe, they identify them for later use for negotiation by the learner (Event 3). The Dick and Carey model also presents steps for establishing and prescribing performance criteria. SCenTRLE recommends similar techniques, once again for negotiation rather than prescription. In short, the SCenTRLE model has instructors apply an instructional design model so that they can help learners define their own learning goals and objectives, strategies, and performance criteria.

Concept Mapping

One exercise that is helpful for instructional designers is to create a concept map of the systematic instructional design process to help visualize the necessary components. Allow us to operationalize a few terms. A concept is a mental image, key idea, or term (such as events, objects, values, skills, or attitudes). A proposition is two or more concepts linked appropriately by linking words (such as are, where, the, in, how, does, makes, etc.). A concept map is a schematic device for representing a set of concept meanings embedded in a framework of propositions. It is a drawing in which key ideas are identified and the relationship between and among them is described.

The strategy for using concept maps includes the use of circles or squares placed around statements or descriptions of concepts. Concepts may be placed on the page in a hierarchical form from global to specific, from complex to easy, from superordinate to subordinate, or by some other meaningful pattern. One set of concepts may be linked not only among themselves but also to other sets of concepts. If relationships (valid, significant, and/or creative) are found, they can be diagrammed and linked.

The concept map serves as a schema or a mental map that helps to determine where we are and where we are going. Similarly, instructors can use concept maps as an instructional technique to help learners create a mental map or schema to connect concepts to other related facts. Concept maps serve as organization tools. Concept maps show links and associations while maintaining the overall picture. Concept maps can be used to help learners explore what
they already know, serve as a learning route, help learners extract meaning from texts, laboratory, studio, and/or field studies, or help learners plan a pathway for writing a paper or completing an assignment. To practice the use of a concept map, we will ask you to use this technique in the application exercise for this chapter. We have included as Figure 3 below a creative example called

Figure 3. Instructional design concept map example

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.
"The Complete Meal for the Mind," prepared by a graduate student, James Michael Farrow (used with permission).

Conclusion

In this chapter, we have explored instructional design from two varying perspectives and the development of learner-centered instructional strategies. The classic instructional systems design model is an outcomes-based model with behavioral and cognitive approaches to instruction. It is described as a model that stresses performance based upon the skill level of the learners with opportunities for revision to promote instruction and learning (Dick, Carey, & Carey, 2001). We share another possibility, SCenTRLE, for a constructivist approach to instructional design. This model promotes a learner-centered focus to promote active engagement and critical/creative thinking. In the next chapter, we will discuss Gagné’s Nine Events of Instruction and how to gain attention and stimulate motivation as an important dimension of an active distance education environment.

Application Exercise

There are a variety of instructional design models. Although they use different terms, they basically have similar components. Create a concept map of what you think are the critical components of systematic instructional design (the big picture—not specifics) with relationships indicated by arrows or another form of “connections.” Be creative!

References

